
MINI-BOOK
MB01 – Sep 2022 v3

MODERN
SOFTWARE
DELIVERY
Continuous Delivery
Operability
SRE

Key industry insights in 6 articles

In association with TechBeacon

2

Modern Software Delivery
Continuous Delivery | Operability | SRE

The rapid pace of change across IT leaves many organizations struggling
to keep up. The complementary practices of Continuous Delivery,
Operability, and Site Reliability Engineering (SRE) offer proven ways to
make software delivery effective and responsive.

At Conflux, we’ve been leading industry thinking and practices for many
years though our consulting, training, and publications. We’re excited to
present this collection of articles relating to modern software delivery in
association with TechBeacon.

All the articles first appeared on TechBeacon.com and are reproduced here
with permission.

In this mini-book:

9 ways organizations screw up continuous delivery

How to find the right DevOps tools for your team

5 proven operability techniques for software teams

Adapt ITIL to DevOps with continual service transition

5 ways site reliability engineering transforms IT Ops

SRE in practice: 5 insights from Google’s experience

3

11

23

29

36

44

3

Continuous Delivery

9 ways organizations screw
up continuous delivery
Matthew Skelton, Head of Consulting, Conflux

Continuous delivery (CD) is a specific set of practices for reliable software
delivery that’s achieved by automating build and deployment and testing
software changes. However, many organizations screw up their approaches
to CD by not adopting some key practices.

Over the past seven years, I have helped over 30 establishments in various
parts of the world adopt CD, and I have seen several repeated mistakes.
Here are nine you should avoid.

1. Not reading Continuous Delivery

Amazingly, some people claim to be doing CD, and yet they have not read
the book Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation, by Jez Humble and Dave Farley. This is where
the term continuous delivery was defined. Yes, technically the phrase is also
in the Agile Manifesto, but the notion of rapid, regular, reliable releases that
most people think of with the phrase was codified in this 2010 book. Most
importantly, CD does not require that code changes be pushed to production
on every change; that’s continuous deployment. That might be useful in your
context, but you’ll get massive benefits from following the CD practices even
with more selective releases.

The way in which the chapter subheadings are written in the book means
that you can use them as a kind of checklist or progress indicator for your
organization. The contents pages from the book can be printed out and
stuck on a wall to act as a progress chart. I have recently collated the
recommendations from the book in a useful, free online tool at
cdchecklist.info, where you can see the checklists in action.

https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912/ref=asap_bc?ie=UTF8
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912/ref=asap_bc?ie=UTF8
https://twitter.com/jezhumble
https://twitter.com/davefarley77
http://cdchecklist.info/

4

Continuous Delivery

2. Using long, slow deployment pipelines

Another common screw-up I see is that organizations create deployment
pipelines that have many steps in sequence, leading to a long wait between
committing code to version control and seeing the changes in production
(live). These long, slow deployment pipelines kill the rapid feedback essential
for teams to be able to act effectively on failures and learn from monitoring.

Instead, use short, wide deployment pipelines that give teams and product
managers enough flexibility to decide which tests to run based on the nature
of each specific change. After committing code to version control, build the
binaries and run unit tests (and perhaps code metrics checks). Then run a set
of automated acceptance tests based on application features (which include

The online continuous delivery checklist tool at cdchecklist.info.

Long, slow deployment pipelines break rapid feedback from the deployment process.

http://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns/
https://cdchecklist.info

5

Continuous Delivery

both user-facing and operational features).

If these checks pass, then by definition the team or product manager may
have the confidence to deploy to production. They also have the option
to run additional checks if they wish, but the additional checks are not
mandatory and depend on the context of the exact change made.

3. Thinking ‘CD is not for us’

Together with a great team, I have run the Pipeline Conference in London
since 2014. Pipeline was the first conference in Europe dedicated to CD. At
both Pipeline and its sibling meetup group, LondonCD, we have had over
130 speakers from around the world and many different organizations talking
about how they have used CD principles to make software delivery reliable
and rapid. The variety of situations in which CD works is what makes it such a
valuable approach.

The wide applicability of CD principles is borne out by my consulting
experience. In fact, every software delivery situation I have encountered
in the last seven years has (or could have) benefited from following almost
every CD principle and practice—without exception. Yes, continuous delivery
is for you!

Short, wide deployment pipelines optimize for rapid feedback and rapid deployment decisions.

https://pipelineconf.info/
http://londoncd.org.uk/

6

Continuous Delivery

4. Having no effective logging or metrics

Many organizations try to adopt the more rapid pace of change enabled by
CD practices without a solid foundation of operational telemetry. This lack of
metrics and logging begins to hurt as deployments become more frequent.
Logging and metrics are crucial “sensing mechanisms” for teams building
modern software systems, rather like the radar and video pattern-recognition
systems that help autonomous vehicles to travel safely at speed on the
highways.

Modern software needs good logging. This is a defined set of event types
agreed upon between developers and operations people, together with
correlation IDs for cross-machine request traceability. Logs are automatically
aggregated in a centralized, off-the-shelf logging system that provides
access to production log data for developers, testers, and operations people
alike through APIs and a browser interface. There is a similar need for
aggregated metrics and a shared dashboard and query interface for teams.

Continuous delivery needs rich telemetry from modern logging and metrics tooling.

https://www.slideshare.net/SkeltonThatcher/unbroken-logging-operabilityio-2015-matthew-skelton

7

Continuous Delivery

5. Underinvestment in build and deployment

Understanding and evolving how we build and deploy our software
is absolutely crucial for effective CD. Too many organizations seem to
undervalue the importance of focusing on build-and-deployment activities;
they prefer instead to add more development teams to focus on “features.”
These companies don’t realize that the cause of delay with feature delivery
is often the creaking build-and-deployment systems or the complexity in
automated testing.

The organizations that succeed with rapid, reliable software releases invest
heavily in build-and-deployment activities. A combination of outsourced
(typically SaaS) tooling and a group of experienced build-and-deployment
engineers helps to smooth and accelerate the flow of well-tested changes
from development to production.

In my experience, a good rule of thumb is to budget for one full-time
equivalent person per software development team of seven to nine people.
So an organization with eight software development teams should expect to
have around eight people dedicated to build and deployment.

Even if all the build-and-deployment tooling is SaaS-hosted, the build-and-
deployment people will have a crucial role to play—in considering versioning
approaches and interdependencies, evaluating new techniques, splitting
and joining components, and ensuring SaaS infrastructure availability. If any
tools are run in-house, then the team will need to deal with even more.

6. Not addressing operational aspects well

By adopting CD, organizations are able to respond to business needs more
rapidly with an increased pace of delivery. This also means that problems
with development practices (such as feature prioritization) are surfaced more
rapidly than before. In particular, if operational aspects of the software
systems are not addressed every week, features will become ever more
difficult to add to the software. This is what I call “feature friction.”

8

Continuous Delivery

A good approach is to spend around 30% of product budget each week
on operational aspects of the software, such as logging, metrics, ops
dashboards, deployment automation, and a planned allocation for dealing
with live service incidents. More advanced organizations actually track the
amount of time and effort spent on operational aspects and alert if the
spend is outside of an accepted range, allowing rapid course correction
within a week.

7. Forgetting the database

Let’s be honest: CD with data and databases is difficult, although it’s
easier than it has been in the past. In some organizations, the production
databases are “safeguarded” by database administrators (DBAs) and are
seen as the definitive version of the database. Usually these production
databases have many special tweaks not found elsewhere, such as data
manipulation jobs, sharding, or replication settings. These all make it difficult
for developers to test database changes in upstream environments, leading
to problems in production, which lead to more restrictions on production
access, and so on—a vicious circle.

A better approach is to make all database changes flow down from version

A focus on only visible features leads to increasing feature friction and live service issues.

https://www.red-gate.com/simple-talk/collections/database-lifecycle-management-achieving-continuous-delivery-for-databases/
https://www.red-gate.com/simple-talk/sql/database-delivery/database-version-control/

9

Continuous Delivery

control in development to production by using one of the many off-the-shelf
tools (commercial or free) to evolve the database schema and settings.
In this way, only transactional data and new content are created new in
production; all other changes are tested before going live, in upstream
environments. There are many off-the-shelf tools to choose from, including
ApexSQL, ActiveRecord (and similar), DbMaestro, FluentMigrator, Flyway,
Liquibase, and a comprehensive suite of tools from Redgate.

8. ‘Just plugging in a deployment pipeline’

By its nature, CD emphasizes the importance of build, deployment, and
release as key areas of focus for modern software. This means that you may
need to refactor or possibly substantially rebuild your software systems to
make them more suitable for rapid, reliable releases. Simply putting your
existing clunky software into a deployment pipeline and hoping for the best is
probably not the ideal approach. Instead, invest in taking the time needed to
re-architect your software to make it more suitable for CD.

9. Coveting the ‘latest shiny’ thing

A perpetual problem in the software industry is the blind pursuit of the next
thing—the “latest shiny”—without first addressing core practices and ways
of working. At the moment, this is driving a rush toward containers and
microservices. But in many cases, the added complexity of these approaches
has been ignored. The rapid, reliable software releases we get from CD
needs core engineering practices to be in place; otherwise problems occur.

For example, a company in London recently asked me to assess its readiness
to move to containers for faster development and deployment. The office was
cramped and way too small for the number of people working there, leaving
no room for whiteboard discussions, team meetings, etc.

Also, there were no unit tests or integration tests for most of the code, few
applications with effective logging or monitoring, and over 200 ETL data
processing jobs that existed only in production. To make matters worse, the
production database was running on a single server with no high availability

https://techbeacon.com/why-software-architects-should-lead-continuous-delivery
https://techbeacon.com/why-software-architects-should-lead-continuous-delivery

10

Continuous Delivery

or failover. To paraphrase Bridget Kromhout, containers were not going to fix
their broken culture.

A checklist to remember:

Here are the nine steps to avoid screwing up CD:

1. Read the Continuous Delivery book by Humble and Farley.
2. Use short, wide deployment pipelines that empower decision makers.
3. Realize that continuous delivery is for you! Think of CD as a set of

excellent practices for building working software systems of every kind.
4. Use good modern logging techniques together with details metrics to

drive decision making.
5. Invest in a ratio of one full-time equivalent for build and deployment

activities per nine-person development team.
6. Spend 30% of product budget on operational aspects every week.
7. Use an off-the-shelf tool for database changes and drive changes from

version control.
8. Re-architect your software systems to suit CD.
9. Adopt good software development practices before adding technical

complexity.

In the words of Dave Farley, co-author of the Continuous Delivery book,
Continuous delivery is an engineering discipline; it needs investment to make
it work.

[Original: https://techbeacon.com/devops/9-ways-organizations-screw-continuous-delivery]

https://content.pivotal.io/slides/containers-will-not-fix-your-broken-culture-and-other-hard-truths
https://techbeacon.com/continuous-delivery-software-craftsmanship-not-enough
https://techbeacon.com/devops/9-ways-organizations-screw-continuous-delivery

11

Continuous Delivery

How to find the right
DevOps tools for your team
Matthew Skelton, Head of Consulting, Conflux

When you adopt a DevOps approach to building and operating software
systems, you must rely on modern tools for almost every aspect of build,
release, and operations activities. But before you get into the weeds of
comparing one tool against another, you need to think more broadly about
what you need.

And there are many types of DevOps tools to consider. With DevOps, many
previously manual or semi-manual activities are fully automated, including
version control (for application code, infrastructure code, and configuration),
continuous integration (for application code and infrastructure code),
artifact management (packages, container images, container applications),
continuous delivery deployment pipelines, test automation (unit tests,
component tests, integration tests, deployment tests, performance tests,
security tests, etc.), environment automation and configuration, release
management, log aggregation and search, metrics, monitoring, team
communications (chat, video calling, screen sharing), and reporting.

You’ll find plenty of excellent tools in all of these categories, but it’s easy to
get hung up on the pros and cons of using one tool versus another. And while
sometimes that’s the right debate to have, confusion around tools may be
a symptom of deeper problems with respect to the way in which your team
uses those tools, or how you introduce those tools to the team.

I have been using the guidelines below with clients for about five years, and
we’ve managed to solve tooling-related problems that would otherwise have
descended into an unhelpful product X-versus-Y shooting match. To become
a high-performing organization, you must take into account the social
dynamics of your organization and the trajectory of the rapidly evolving
public cloud vendors.

https://techbeacon.com/9-ways-organizations-screw-continuous-delivery
https://techbeacon.com/open-source-tools-put-ops-devops
https://techbeacon.com/dont-be-fool-your-devops-tools

12

Continuous Delivery

Choose tools that facilitate collaboration

Having highly effective collaboration between teams is critical for DevOps.
Some people think they need to buy a dedicated collaboration tool for
this purpose, but there are many different tools you can use to enhance
collaboration.

Consider one of the cornerstones of a DevOps approach: version control.
Let’s say you’re trying to encourage more people in the organization to use
version control, including for database scripts, configuration files, and so on.
If you insist that everyone use only a command-line tool for version control,
you’ll miss out on collaboration opportunities:

The command-line view of version control is certainly part of a DevOps tool
set, but it is unfamiliar to many people—especially non-developers—and has
no obvious collaboration potential. But if you use a richly featured version-
control platform such as Github, Bitbucket, or Gitlab, you can take advantage
of discussion threads around file changes to get people talking about why a
file changed. This helps you collaborate with people who have different skills,
and encourages more people to learn how to use version control:

Command-line tools can be a barrier to collaboration for some people.

13

Continuous Delivery

Using a browser-based version-control platform opens up version control
to a wider audience than just software developers, which in turn helps you
to emphasize the importance of version control as a key DevOps practice.
By choosing a version-control tool with discussion capabilities and making it
available to a wide audience, you can enable rich communication between
teams and groups within your organization.

The same approach works for many other tools, too. I once consulted
with an organization that had a tool for log aggregation and search.
The IT operations people found it valuable, but the developers did not
have permission to search the logs from the production systems. Access
was denied because, IT claimed, the data was of a sensitive nature. But
the managers wanted to improve the way in which the IT Ops and Dev
teams collaborated. So they opened up access to the log-search tool for
developers and—surprise— developers and operations people collaborated
more. The tool hadn’t changed, but changing access permissions enhanced
collaboration.

Browser-based tools can help to encourage collaboration for people who are less technology-
savvy.

14

Continuous Delivery

Key points:

• Value collaboration as a key selection aspect of tools.
• Look behind the tool’s main purpose to find collaboration opportunities.
• Ask, “How does our use of this tool help or hinder people in

collaboration?”

Favor tools with APIs

Modern software development needs delivery tools that are highly
automatable, yet customizable. That means you need a fully featured API
for each tool—preferably one that’s HTTP-based. When you compose
capabilities by gluing together API-rich tools, you enable easy wiring for
alerts and other events. Avoid tools that try to do everything from within
their own frames of reference; favor those that do one or more jobs well and
integrate easily with other tools.

Given the speed of change in the software sector, it’s particularly important
to choose tools that meet these criteria. If you do, then when a new tool
comes along you’ll be able to replace your old tool with minimal disruption.
Being stuck with a big, lumbering tool set that’s only half-good at most
things has been a source of significant pain for organizations trying to adopt
DevOps. Keep your tooling nimble and composable to give your team the
flexibility to adapt new approaches easily.

But beware of “spaghetti” tooling that’s chained together with
undocumented scripts. Treat your software delivery and operations tools
like a proper production system. At the rapid pace enabled by DevOps,
it’s essential to be able to keep the tools you use for software delivery and
operations running and working 24x7. Many companies make the mistake
of adopting new tools without the operational support and care needed to
make those tools work well. So when adopting new tooling, consider starting
with SaaS-hosted offerings and running internal prototypes/demo versions
before building an internal capability.

15

Continuous Delivery

Key points:

• Choose tools that expose APIs.
• Aim for composition of new capabilities from multiple API-driven tools.
• Build and deployment are first-class concerns.

Favor tools that can store
configuration in version control
One core tenet of DevOps is that you should store all configuration settings
in version control. That includes the configuration not just for your custom
software applications, but also for tools you use in software delivery and IT
operations.

To be effective in a DevOps context, each tool must expose its configuration
in such a way that you can store the configuration as text files that you can
then expose to version control. Then you can track the history of configuration
changes and test changes beforehand.

Why would you want to do that? If you cannot track and test configuration
changes to your delivery and operations tooling, you risk breaking the
machinery that makes DevOps work.

Key points:

• Choose tools that expose configuration to version control.
• Point-and-click is no longer acceptable for configuration of tools.

Use your tools in a way that encourages learning

Some of the tools useful for DevOps are quite involved and complicated,
especially for people new to them; don’t expect everyone to understand or
adopt difficult new tools immediately. In fact, if you introduce a tool that is
too tricky, some people may become hostile, especially if you don’t provide
training or coaching. That sometimes happens when organizations select
best-of-breed tools without considering how easy they are to use.

16

Continuous Delivery

Assess the skills in your organization and devise a tools roadmap for moving
teams to improved ways of working. Select tools that offer more than one
way to use them (GUI, API, command-line) so people can learn at their own
pace. And avoid leaving people behind on the climb to more advanced
approaches by holding regular team show-and-tell sessions to demonstrate
tools and techniques.

For example, you might start with the browser-based interface, such as the
one below, for people new to version control, giving them time to adjust to
this approach before training them on the command-line tools for version
control.

DevOps is a journey from mostly manual to fully automated, and not everyone
starts from the same place. Give people time and space to become familiar
with new tools and approaches. They might start with a simpler tool, then
adopt a more powerful one later.

Command-line tools can be daunting for some people and may hinder collaboration unless you
provide training. Tools with a more friendly UI can help to bring people on board to new ways of
working, giving them the confidence to adopt command-line tools later.

17

Continuous Delivery

Key points:

• Bring people with you on your DevOps journey.
• Prefer achievable gains now over possible future state.
• Avoid a fear of too-scary tools by stepwise evolution.

Avoid special production-only tools

The speed and frequency of change that DevOps gives you the means
you need to emphasize the feedback loops within your delivery and
operations processes. In particular, it is important that all technology people
in your organization learn as much as possible about how the production
environment works so they can build better-working, more resilient software.
You also need to test changes to all parts of the software system before
deploying new versions to production.

For an effective DevOps approach, choose tools that work easily in
nonproduction environments (development, continuous integration, staging,
etc.). The tool should be cheap enough to buy or install so that you can
install it in all environments, including developer laptops and the automated
build-and-test system. A tool that is so expensive that you can only afford a
license for production is not a good tool for DevOps. Such “singleton” tools
tend to accrue an aura of magic, leading people to think that production
is special. People become disengaged, and that’s a bad outcome. Good
tools for DevOps are also easy to spin up in different environments using
automated scripts. A tool that needs manual installation is not a good choice
for DevOps.

Production-only tools prevent teams from learning because production is treated as a special case.

18

Continuous Delivery

In some sense, this “run it anywhere” approach to tools for DevOps makes
production less special, and rightly so. Many of the problems with older,
fragile IT systems are the result of production being treated in a special way,
preventing developers and testers from learning how production works. With
a DevOps approach, your aim is to choose tools that are easy to install and
can spin up in multiple environments, even if the feature set is less impressive
than that of a tool that is more advanced but difficult to configure. Aim to
optimize globally across teams that need to collaborate, not just locally for
production.

Key points: Production-only tools...

• Break the learning feedback loop.
• Make CI/CD more difficult.
• Underestimate the value of collaboration and learning.

Choose tools that enhance inter-
team communications
One of the most common problems I see in organizations struggling to build
and run modern software systems in a DevOps way is a mismatch between
the responsibility boundaries for teams or departments and those for tools.
The organization either has multiple tools when a single tool would suffice
(in order to provide a common, shared view), or it has a single tool that’s
causing problems because teams need separate ones.

In recent years, Conway’s Law has been observed and measured in many

Running the same tools in production as in all other environments enables rapid learning and
increases engagement within teams.

19

Continuous Delivery

studies. The communication paths in our organization drive the resulting
system architecture:

“Organizations which design systems ... are constrained to
produce designs which are copies of the communication structures
of these organizations.”
 — Mel Conway

You therefore need to be mindful of the effect of shared tools on the way
in which teams interact. If you want your teams to collaborate, then shared
tools make sense. But if you need a clear responsibility boundary between
teams, separate tools may be best. Use my DevOps team topologies patterns
to understand which DevOps model is right for your organization, and then
choose the tools that fit that model.

If you need the development team to work closely with operations (the Type

In a Type 1 platform model, smooth collaboration implies some shared tooling between Dev and
Ops. Image from DevOpsTopologies.com and licensed under CC BY-SA license.

http://devopstopologies.com/
http://devopstopologies.com
https://creativecommons.org/licenses/by-sa/4.0/

20

Continuous Delivery

1 model), then having separate ticketing or incident management tools for
Dev and Ops will result in poor inter-team communication. To help these
teams collaborate and communicate, choose a tool that can meet the needs
of both groups. But be sure that you understand the user experience needs of
each group, since a tool that infuriates your engineers is a sure way to stop a
DevOps effort dead in its tracks.

If, like many enterprises, yours is moving to a Type 3 (platform) model, then
the platform team is not responsible for the live service of the applications;
that’s the responsibility of the product development teams. When
responsibility boundaries don’t overlap, you won’t get much value from
insisting on the same incident-tracking tool or even the same monitoring tool
for the platform and development teams. This becomes even clearer when
IT operations has outsourced to a cloud service provider, since in that case
there’s no question about forcing the same tools on two different teams.
In summary, don’t select a single tool for the whole organization without
considering team inter-relationships first.

A Type 3, IT Ops as infrastructure-as-a-service (platform) implies little need for shared tooling
between Dev and Ops. Image from DevOpsTopologies.com and licensed under CC BY-SA license.

http://devopstopologies.com
https://creativecommons.org/licenses/by-sa/4.0/

21

Continuous Delivery

Key points:

• See the whole organization as a system you’re building.
• Have separate tools for separate teams.
• Deploy shared tools for collaborative teams.

Optimize for learning, collaboration,
automation, and team dynamics
When choosing tools for DevOps, it’s important to avoid product
X-versus-Y tooling shootouts that simply compare lists of features side
by side. Sometimes that’s needed, but only after you understand the
broader implications of having one (or both) of those tools in place in your
organization. Using tools in the wrong way—especially trying to make
everyone use the same tool—can be counterproductive for DevOps.

Try to assess and understand where your team communication boundaries
should be, using the DevOps team topologies patterns and Conway’s Law, to
avoid a one-size-fits-all approach to tools. Sometimes, using multiple, similar
tools is the right approach, but that depends on your team boundaries.

Ensure that the tools you choose do not present a learning barrier to people
who are new to DevOps approaches; expect to replace tools regularly as
people develop their skills and establish new collaboration patterns.

Tools for DevOps need programmable APIs. Don’t buy or use tools that need
a human operator to click buttons on a browser application. With DevOps,
you need to compose functionality from multiple, cooperating tools using APIs
and “glue” scripts.

Finally, don’t optimize for your production environment. A tool that exists only
in the live production environment is a tool that you can’t test upstream, and
that’s a dangerous approach in a fast-paced DevOps world.

[Original: https://techbeacon.com/devops/how-find-right-devops-tools-your-team]

https://techbeacon.com/devops/how-find-right-devops-tools-your-team

Video training
for fast flow
Lift awareness and capabilities at
scale across your organization with
expert-led video training on fast
flow and Team Topologies.

confluxhq.com/training

https://confluxhq.com

23

Operability

5 proven operability
techniques for teams
Matthew Skelton, Head of Consulting, Conflux

As software systems become more distributed and interconnected, you need
to ensure that the software works well when operating live in production—
what I call software “operability”—and you need to be able to observe its
behavior.

With the goal of improving mutual understanding of software systems through
collaboration—a true DevOps approach—here are five practical ways your
team can collaborate to enhance the operability of your software systems.

1. Collaborate on logging with event IDs
to boost observability and awareness
Problem 1: Lack of observability for distributed systems.

Modern software requires teams to understand logging as a first-class
concern. Using log traces from multiple machines is key to observing the
behavior of runtime systems. With modern logging, you log to file (for servers)
or STDOUT (for containers and serverless). The logs are then aggregated
automatically into a central, searchable log store that’s accessible with a
browser UI and an HTTP API.

In the past, logging was seen as just a way to deal with errors, but this
is a very ineffective use of logging. Since 2007, I have treated logging
as a rich trace of application behavior, using unique identifiers such as
an enum to represent distinct states that I also call event IDs. Examples
of event IDs could be ServiceStarting, DatabaseConnectionOpened,
PostcodeLookupFailed, NewUserRegistered, etc.

OpsLogger is a good example of a logging library that uses techniques

https://techbeacon.com/why-operational-efficiency-key-your-applications-success
http://operabilitybook.com/
https://techbeacon.com/9-ways-organizations-screw-continuous-delivery
https://blog.matthewskelton.net/2012/12/05/tune-logging-levels-in-production-without-recompiling-code/
https://blog.matthewskelton.net/2012/12/05/tune-logging-levels-in-production-without-recompiling-code/
https://github.com/EqualExperts/opslogger

24

Operability

similar to the event ID approach.

By defining and collaborating on this set of “interesting” events, teams come
to better understand the system they are building and running. No longer is
logging “just for errors”; logging leads to vital ongoing insight into the runtime
execution of the system.

You log only when you’re representing an “interesting” software state, so
you’re forced to consider why you’re logging at a particular point in the code.
This in turns avoids what one might call “logarrhea”—too many arbitrary log
lines. Combined with a structured logging library, you have a rich source of
operational intelligence for our software, validated and curated by teams
working with the systems.

Takeaway 1: Use enum-based event IDs with logging to explore system
runtime behavior and fault conditions.

When shipping a parcel, the “interesting” event IDs might be ArrivedAtDepot, InTransit, and
Delivered. We define equivalent states for our software that are interesting for all the teams
involved. Source: Conflux

25

Operability

2. Use Run Book dialog sheets to identify
operational requirements early
Problem 2: Operational aspects not addressed, or addressed too late in
the cycle.

Too often, operational aspects of the software system are addressed either
late in the process or not at all, leading to problems in the production
environment. A technique I have found valuable with many teams is to use
a Run Book dialog sheet, a large (A1 size) printed paper sheet with a set of
typical operational criteria listed. There’s also space for the team to write
down answers or questions. The Run Book dialog sheet is licensed under
Creative Commons Share Alike, so it’s free to use.

The Run Book dialog sheet technique works best when the dev/delivery team
takes the lead on defining the initial set of operational features, because the
team typically has to reach out to more operations-focused teams to fill in
the details. The software design may change at this point to better support
operability.

Takeaway 2: Use Run Book dialog sheets to explore and establish
operational requirements as a team, around a physical table, together.

The supersized A1 format of the Run Book dialog sheet encourages round-the-table team
collaboration on operational aspects. Source: Conflux

http://runbooktemplate.info/
https://blog.softwareoperability.com/2013/10/16/operability-can-improve-if-developers-write-a-draft-run-book/
https://blog.softwareoperability.com/2013/10/16/operability-can-improve-if-developers-write-a-draft-run-book/

26

Operability

3. Collaborate on endpoint health checks

Problem 3: “Why has my deployment failed again?”

Deployment failures are really boring, particularly when they’re due to
environment misconfigurations. One practical way to remove much of the
ambiguity from deployment problems is to use HTTP-based health checks for
every component.

For every separate running component or service, you have a health-check
endpoint that returns HTTP 200 if the service is healthy and HTTP 500 if the
service is unhealthy. You can add more nuanced responses too.

Provide helper endpoints for services such as databases or queues that have
no native HTTP capability. This lets you wire up a standard environment
dashboard really easily, showing the health of all components at a glance.
This technique is particularly powerful when teams collaborate on the
conditions for “healthy” and “unhealthy.” Why does component X need to see
that external service? Why does component Y need four virtual CPU cores or
a GPU? You very soon discover interesting runtime dependencies through the
process of defining the health-check logic.

Takeaway 3: Use endpoint health checks (with HTTP 200/500 responses)
to explore component health conditions.

Provide a small helper service to provide a health check endpoint for a component without native
HTTP, such as a SQL database. Source: Conflux

https://github.com/Lugribossk/simple-dashboard
https://github.com/Lugribossk/simple-dashboard

27

Operability

4. Collaborate on correlation IDs
for rich transactional tracing
Problem 4: “Which containers/servers handled the request?”

As the number of processing nodes—servers, containers, IoT devices,
availability zones—increases, you need to be able to reconstruct a request
as an execution trace across multiple nodes. Perhaps one or more nodes
are faulty or misconfigured, such as having the wrong version of a container
image deployed.

You need to understand exactly where processing delays occur so you can
troubleshoot more quickly and resolve the bottlenecks. You can do this using
correlation IDs, near-unique identifiers that you inject at the edge of the
system and then pass down through downstream components.

Again, if you collaborate among different teams on the trace details, you
gain rich operational insights into the running software system. Correlation
IDs should help dev teams build better software every week, rather than
merely being a special feature of the production environment.

Takeaway 4: Use correlation IDs to trace execution (synchronous and
asynchronous) and increase team awareness about system behavior.

5. Use lightweight user personas to capture
the needs of testers and ops people
Problem 5: Software is difficult to operate—poor UX for ops.

In your efforts to meet the needs of the primary users of your systems, you
sometimes forget to meet the needs of secondary or internal users such
as testers, release engineers, and ops people, which is a problem. If your
software is difficult to test, difficult to deploy, and difficult to operate, you risk
losing money or reputation fighting the software to resolve the problem when
there is a failure of some kind.

28

Operability

You can use lightweight user personas to characterize the needs (motivations,
goals, frustrations) of testers, release engineers, ops people, and others who
need to interact with the software as part of their job.

Employed well, user personas help to build empathy with other people so you
can discover ways in which the software needs to work better in production
(or before production). By making software more testable, releasable, and
operable, you improve operability overall and make the software more
resilient—wins all around.

Takeaway 5: Use lightweight user personas to make sure that the needs of
secondary users (ops, testers, etc.) are met during software development.

Create your operability action plan

Focus on operability, and you’ll create software systems that work well
in production. But to achieve good operability, you must encourage
collaboration between different teams by using practical, team-friendly
techniques.

[Original:
https://techbeacon.com/app-dev-testing/5-proven-operability-techniques-software-teams]

Addressing the needs of secondary users helps to improve operability. Source: Conflux

http://www.keepitusable.com/blog/personas-why-is-it-important-to-understand-your-users/
https://techbeacon.com/app-dev-testing/5-proven-operability-techniques-software-teams

29

Operability

Adapt ITIL to DevOps:
continual service transition
Matthew Skelton, Head of Consulting, Conflux

If you work in a large organization with a traditional, sequential release
process such as ITIL, the idea of a continuous flow of change may sound
unfamiliar. That’s been the case at several organizations with which I’ve
consulted recently, so I use the term “continual service transition” as an easier
way to explain continuous delivery (CD) to people familiar with ITIL—and you
can too.

If your organization has adopted ITIL, you’re probably already familiar with
the concept of service transition, the process where a service moves from
development into live operation.

In a traditional IT environment, various service readiness checks help teams
assess and improve software before it goes live. In a continuous delivery
world, however, you don’t have discrete phases (such as service transition),
but you can and should adopt best practices from ITIL around service
readiness.

When I discussed new deployment models with an ITIL-trained release
manager recently, he responded, “Ah, so we’ll always be doing service
transition.” Exactly right. In a DevOps world, service transition as a separate
phase after your software has been built makes little sense.

You need continual service transition, where you’re always assessing service
readiness and the operability of the changes flowing toward production.
Here’s how it works.

https://techbeacon.com/enterprise-it/itil-fit-your-organizations-culture
https://www.axelos.com/news/blogs/august-2018/top-tips-for-transitioning-to-a-new-it-service
https://techbeacon.com/app-dev-testing/how-deliver-speed-without-losing-your-customers
https://techbeacon.com/app-dev-testing/how-deliver-speed-without-losing-your-customers
https://techbeacon.com/enterprise-it/how-itil4-sre-align-devops
https://content.microfocus.com/optimize-devops-tb/software-factory-devops?lx=vm26kZ&utm_source=techbeacon&utm_medium=techbeacon&utm_campaign=00134846

30

Operability

The problem with service transition as a phase

The concept and details of service transition are excellent: assess service
readiness in many different dimensions (supportability, performance, help
desk, end-to-end physical plus digital interactions, etc.). But in a DevOps
world, where there is value in making changes every day, a large service
transition phase is less useful.

Many organizations assess service readiness and operability properly only
during service transition, meaning that there is little time or possibility to fix
operational problems.

What’s needed in these waterfall-like situations is a way to continually assess
service readiness and operability in a way that can meet ITIL standards but
also allow for a rapid flow of small updates to software systems.

Axelos, which maintains the ITIL standards, launched ITIL 4 in early 2019 as a
way to address the problems with a phased approach. This update focuses
on practices rather than processes, which is welcome because practices are
more easily adapted to new technologies and new technology dynamics
than are processes. However, it will take many years for organizations with
existing ITIL expertise to adopt ITIL 4.

Figure 1: The traditional phases in ITIL 3 with service transition often happen only after the software
has been mostly built. (ITIL 4 does aim to address the problems of a phased approach.) Source:
Axelos.

https://techbeacon.com/enterprise-it/itil-4-good-bad-bottom-line

31

Operability

How can you help organizations using ITIL move away from a waterfall-like
large-phase approach and toward a more continuous flow of change? This is
where the concept of continual service transition comes in.

Continual service transition for ITIL practitioners

Since 2014 I have helped many organizations around the world adopt
continuous delivery practices. Many of these organizations used some
aspects of ITIL to manage the release and change processes, and we had to
adapt these to suit a more DevOps-oriented way of working.

For example, I recently worked as engineering lead for a UK government
department, covering many teams, locations, and suppliers. As part of
championing continuous delivery practices there, I had to find ways to
help people with ITIL-specific roles such as release manager and change
manager to see things in a different way.

To many people familiar with ITIL, software delivery is all about defining the
scope, building something with all the functionality together, and then getting
that software into production.

The idea of a continuous flow of small changes can be baffling to people
who think in terms of releasing “complete” software. Jez Humble, co-author
of the 2010 book Continuous Delivery, wrote a great article that covers in
detail how to extend and adapt the concept of the ITIL standard change to
be more suited to continuous delivery.

The concept of continual service transition seems to help people understand
continuous delivery from an ITIL perspective. Service transition is a specific
phase in ITIL 3 that occurs after software has been built and needs to be
moved into live service.

In a DevOps world, however, you’re releasing small chunks of software
whenever they’re ready. This continual flow of change helps you detect
problems with the design and implementation, giving you the chance to fix
problems quickly.

https://techbeacon.com/devops/9-ways-organizations-screw-continuous-delivery
https://techbeacon.com/devops/9-ways-organizations-screw-continuous-delivery
https://twitter.com/jezhumble
https://www.goodreads.com/book/show/8686650-continuous-delivery
https://continuousdelivery.com/2010/11/continuous-delivery-and-itil-change-management/
https://continuousdelivery.com/2010/11/continuous-delivery-and-itil-change-management/

32

Operability

In this context, you need to apply service-transition principles all the time,
assessing the operability of the software and validating service readiness.
With DevOps, you have a very tight feedback loop between service
operation (software running in production) and service design (software
development).

All the key activities that used to happen during service transition in an
ITIL 3 model now need to happen continually, for every small chunk of new
software heading to production (see Figure 2).

This continual service transition helps organizations make rapid course
corrections based on small, low-risk changes. Co-opting the ITIL language
of “service transition” allows people from an ITIL background to more readily
grasp the nature of the new DevOps ways of working.

In addition, there are a few practical techniques that work well alongside
continual service transition that can help your organization adopt continuous
delivery.

Start by deploying a simple readme file

A useful technique for demonstrating the continuous delivery approach is to

Figure 2: Continual service transition, with (1) feedback from software changes running in
production (2) informing and influencing the next software change being written. Source: Conflux.

33

Operability

use a walking skeleton— essentially a bare-bones deployment pipeline that
does very little initially.

Begin by deploying a plaintext file, such as readme.txt, to the production
environment. The file will not be visible publicly, but the deployment steps will
be tracked, logged, and visible to release managers and change managers.

Why start with a readme.txt? It’s about minimal risk. The least risky software
deployment is a simple text file with some searchable content. This
means that from a risk perspective, the deployment is safe and of minimal
complexity. Almost anyone can reason about the possible impact of a
plaintext file in production.

As part of the deployment, show people the metrics, logs, and dashboards
that track the deployment activities, and demonstrate that they have full
visibility into changes. When you have won their trust, deploy a simple “Hello,
world!” application (slightly more risk, but still understandable). Over time,
deploy increasingly larger chunks of software, while bringing other people on
the journey.

Design for operator experience

A key part of DevOps is making software easier to operate. Software with
poor operability leads to extended service recovery periods, more damaging
incidents, and higher burnout in IT operations teams. This is why SRE teams
sometimes refuse to partner with development teams that have not invested
properly in operability.

A key part of continual service transition (and DevOps in general) is therefore
to define and address the experience of service and Ops teams when they’re
working with software: the operator experience. What do these teams
need to see on dashboards? What query tools do they need to find failed
transactions or stuck processing jobs?

Use standard user experience (UX) techniques to design a good UX for
people running the software in production by treating live service/Ops/SRE
people as a user of the software.

https://learn.techbeacon.com/units/6-agile-methods-backlog-prioritization
https://techbeacon.com/enterprise-it/5-ways-site-reliability-engineering-transforms-it-ops
https://techbeacon.com/enterprise-it/5-ways-site-reliability-engineering-transforms-it-ops
https://techbeacon.com/enterprise-it/5-ways-site-reliability-engineering-transforms-it-ops
https://techbeacon.com/app-dev-testing/6-big-ux-mistakes-enterprise-app-teams-still-make

34

Operability

To achieve this, you may also need to review the wording of commercial or
internal contracts to look for ways to increase responsibility for operational
effectiveness in groups that are building the software.

It may be useful to insist that the group or supplier building the software
define service readiness criteria, rather than the people running the
software in production. Force commercial or contractual responsibility for the
operability of the software being written.

Shift your mindset

The focus of service transition in ITIL on operability and service readiness is
very valuable. Service transition as a separate phase only after software has
been developed does not fit well with a modern DevOps-style incremental
delivery of small changes.

Instead, the attention to service readiness and operability should happen all
the time— “continual service transition”— with close collaboration among the
groups involved.

The mindset shift is quite large, so use some techniques to help: Deploy a
plaintext readme.txt file to production, and demonstrate the metrics, logs,
and dashboards that track changes.

Explicitly design for the operator experience through the use of UX practices
applied to your IT Ops team. And revisit and evolve commercial contracts to
help ensure that operability and service readiness are built into the software
all the time.

To improve your approaches to service readiness and operability, see The
Site Reliability Workbook, from Google, which includes practical tips for SRE
implementation based on work with Google’s customers, and also the Team
Guide to Software Operability, from Conflux Books, which contains practical,
team-focused techniques for enhancing operability in modern software.

[Original:
https://techbeacon.com/enterprise-it/how-adapt-itil-devops-continual-service-transition]

https://landing.google.com/sre/workbook/toc/
https://landing.google.com/sre/workbook/toc/
http://operabilitybook.com/
http://operabilitybook.com/
https://techbeacon.com/enterprise-it/how-adapt-itil-devops-continual-service-transition

Group learning
for fast flow
Expert-led group learning events with
Conflux act as catalysts for lasting
change in your organization, helping to
adopt fast flow and Team Topologies.

confluxhq.com/learning

https://confluxhq.com

36

SRE

5 ways site reliability
engineering transforms IT Ops
Matthew Skelton, Head of Consulting, Conflux

Traditional IT operations do not work at the speed of modern, cloud-native
software delivery. That’s why new approaches—particularly site reliability
engineering (SRE)—are gaining traction across the industry.

But SRE, pioneered by Google, is radically different from IT operations of
the past, due to its focus on the error budget, the inter-team relationships
brokered by the error budget, the focus on everything as code, and the
ability of SRE teams to push back on bad software.

Over the past 10 months I’ve worked with three organizations (two large and
one small-to-midsize enterprise) to reconsider their approach to IT operations
for cloud-native software. To do that, the teams explored the SRE model
in some detail: the effect on supplier contracts, the dynamics of SRE as a
service, the skills gap, and so on.

Here are the ways your large enterprise can take advantage of SRE, and
what effect that has on IT operations for both leaders and hands-on
managers.

1. Let software engineers design IT Ops

People on SRE teams are either software developers with strong operations
knowledge, or IT operations people with strong software development skills.
Either way, software is the approach that SRE teams use to solve problems.

If SREs have to undertake the same manual steps to restore service to an
application more than a couple of times, they will write software to automate
the task. And because SREs understand and practice modern software
development techniques, the software they write to fix the problem will not

https://techbeacon.com/building-next-generation-cloud-native-apps-essential-guide
https://techbeacon.com/building-next-generation-cloud-native-apps-essential-guide
https://techbeacon.com/7-bad-habits-highly-ineffective-software-engineers

37

SRE

be just a clunky shell script, but well-written software with test scaffolding
running in a continuous integration environment.

This software-first approach to IT operations also extends to the role of the
development team at times. If the SRE team that looks after a particular
application or service finds that it is spending more than 50% of its time
doing manual operational work to address problems in the software, the
development team must pick up the slack.

This is done, according to Stephen Thorne, customer reliability engineer at
Google, by:

• Monitoring the amount of operational work being done by SREs and
redirecting excess operational work to the product development teams

• Reassigning bugs and tickets to development managers
• [Re]integrating developers into on-call pager rotations

All the redirection ends when the operational load drops back to 50% or
lower.

So if a development team produces software that is too difficult to operate
within the 50% balance for the SRE team, the development team must take
on the operational tasks and help fix them, learning about operational
aspects as needed.

This is a highly disciplined balance between leaning on the skills of SREs
and retaining responsibility for the operability of the software within the
development team.

2. Rigorously focus on error budget and SLOs

At the heart of the SRE approach is the SLO for the application or service
that is being run by the SRE team. The product manager for the service
must choose an appropriate SLO that gives her enough margin of possible
downtime to cover unforeseen problems while delivering features and
updates at a rate that users expect.

https://medium.com/@jerub/tenets-of-sre-8af6238ae8a8
https://twitter.com/jerub
https://techbeacon.com/5-proven-operability-techniques-software-teams
https://techbeacon.com/5-proven-operability-techniques-software-teams

38

SRE

Because any service downtime is measured by “neutral” pervasive tooling,
there is no dispute about the figures. The SLO approach also drives the
adoption of synthetic transaction monitoring, an excellent practice for
customer-facing systems. This tests whole customer journeys on a regular
basis (usually in 5-to-10-minute increments) from an automated script. This in
turn brings the service closer to the customer and, by extension, the dev and
SRE teams closer to the customer as well.

As a product manager working with an SRE team, if you are unhappy with
the restrictions on deploying new features because you have used all your
error budget, what are your options? You can either redefine the SLO to be
less available (and therefore possibly have more downtime) or put more effort
into operational aspects of the software so that it has better operability and
doesn’t fail as much. It’s a simple choice!

3. Treat IT Ops as a value center, not a cost center

SRE is a high-skill activity, and SRE experts are in short supply; even
Google struggles to hire SREs. The unusual mix of deeply technical skills and
customer-focused attention to SLO and error budget means that trying to
reduce costs for an SRE team is not a wise move.

Enterprises that adopt SRE therefore need to stop treating IT operations as
a line item subject to cost reductions. Instead they must treat IT operations
as a value center that can help the company avoid downtime and maximize
revenue and service availability.

Instead of hiring large numbers of junior, lower-skilled front-line staff, SRE
demands that we select high-skilled, experienced, committed staff who will
automate their way out of mundane activities. This is analogous to hiring
aircraft pilots who have many years of long-distance flight experience
rather than junior ground staff. Modern software systems are complicated,
expensive machines; why would we hire low-skilled staff to run them?

Thankfully, SRE teams are optional. That’s right; not every development team
at Google uses SRE. “Downscale the SRE support if your project is shrinking
in scale, and finally let your development team own the SRE work if the scale

https://techbeacon.com/power-combination-synthetic-real-device-app-monitoring
https://techbeacon.com/power-combination-synthetic-real-device-app-monitoring
https://medium.com/@rakyll/the-sre-model-6e19376ef986

39

SRE

doesn’t require SRE support,” said Jaana B. Dogan, SRE at Google.

So enterprises can retain a small SRE footprint for critical services, but leave
the IT operations of smaller and less proven services to development teams,
who are well-placed to support the service they are building because they
know it well.

4. Let SRE jump-start cloud-native IT Ops

For enterprises beginning to move to cloud-based platforms and delivery
models, the array of options for automation and team responsibilities can be
a bit daunting. The range of different ways to do DevOps can be confusing,
partly because context makes a huge difference to the effectiveness of these
different options.

The case of Poppulo is typical. Damien Daly, head of engineering at the
software company, explained why Poppulo created an SRE group: “As we
are getting bigger, concentrating our platform development and reliability
expertise [in SRE] will allow us to more effectively develop both. Reliability
and our platform are first-class concerns and need to be treated with the
respect they deserve.”

The SRE model presents a clear, specific set of practices and team dynamics
that works for large organizations. If you are in an enterprise that needs to
move rapidly to cloud-native IT operations from a more traditional setup,
then adopting SRE could work well—though only if you adopt it properly and
not just rename existing teams.

You may be able to to bypass some of the organizational awkwardness
of other delivery models by adopting SRE, but beware of halfhearted
implementations that do not set up the required, careful balance of
responsibilities.

https://twitter.com/rakyll
https://techbeacon.com/how-scale-devops-recipes-larger-organizations
https://techblog.poppulo.com/sre-function/

40

SRE

5. Use managed services to adopt SRE quickly

One way to get the benefits of the SRE discipline quickly, without hiring lots
of expensive SRE people, is to use an external provider for SRE. Although
SRE was developed and codified at Google using in-house teams, we are
beginning to see some emerging SRE-as-a-service offerings from capable
outsourced managed service providers.

The SRE-as-a-service model might seem strange at first for IT organizations
familiar with collaborative, in-house DevOps approaches to building and
running software systems. But, as with many aspects of SRE, if we respect the
delicate dynamics involved, then SRE as a service can work well.

The SLO and well-defined standard operating procedures that are at the
heart of the SRE approach lend themselves well to a commercial contract.
Keep in mind, though, that the details of the commercial contract need to be
quite different from typical outsourced IT operations contracts.

We can see this “contract boundary” between dev and SRE in the well-
known DevOps team topologies pattern Type 7. (The “DevOps,” shown in
green, is the collaboration between dev and SRE, not a separate team):

At Google and other large organizations with in-house SRE staff, the
“contract” is one of mutual trust around the SLO; for organizations using
managed SRE services, the contract will have a commercial element. With
a managed SRE service, Russ McKendrick, SRE practice lead at UK-based
managed service provider N4Stack, highlights the importance of the SRE
team having the authority to say no. “The ability of the SRE team to insist on
good operability is a crucial reason for the success of the SRE approach,” he
said.

This means that a commercially managed SRE contract will include clear
terms for the way in which the managed service provider will push back on
software that does not work well. In practice, the SRE provider will probably
help the dev team improve the operability before releasing to production,
possibly through a parallel time-and-materials arrangement.

Another aspect of success with managed SRE is the use of tooling to define

https://n4stack.io/2018/09/25/sre-as-a-service/
http://devopstopologies.com/
http://devopstopologies.com/
https://www.linkedin.com/in/russmckendrick/
https://n4stack.io/2018/09/25/sre-as-a-service/
https://techbeacon.com/5-proven-operability-techniques-software-teams

41

SRE

and automate the standard operating procedures needed to keep software
running in production. Procedures written in Word or PDF documents are not
going to work.

As DevOps luminary Damon Edwards, co-founder of Rundeck, stated in a
blog post on operations as a service: “Standardizing procedures helps SREs
save time, reduces errors (especially under pressure or when a procedure
is critical but run infrequently), and makes it easier to spot anomalies (the
outcome is different than expected, or log output is unexpected).”

When adopting a managed SRE approach, you should expect to invest time
on an ongoing basis to create and evolve standard operating procedures
using a software tool shared with the managed SRE partner (and with the
procedures probably stored in version control such as Git).

Engineer-driven

Ben Treynor, vice president of engineering at Google, said SRE is “what
happens when you ask a software engineer to design an operations
function.” This may sound strange to people from an IT operations

Diagram of SRE responsibilities in relation to dev teams. Image from DevOpsTopologies.com and
licensed under CC BY-SA license.

https://twitter.com/damonedwards
https://www.rundeck.com/blog/sre-create-standard-operating-procedures-and-enable-operations-as-a-service
https://www.rundeck.com/blog/sre-create-standard-operating-procedures-and-enable-operations-as-a-service
https://www.linkedin.com/in/benjamin-treynor-sloss-207120/?originalSubdomain=zw
https://landing.google.com/sre/interview/ben-treynor.html
https://landing.google.com/sre/interview/ben-treynor.html
https://landing.google.com/sre/interview/ben-treynor.html
http://DevOpsTopologies.com
https://creativecommons.org/licenses/by-sa/4.0/

42

SRE

background, but essentially it means that people on SRE teams have
excellent coding skills and—crucially—have a strong drive to automate
repetitive ops tasks using code, thereby continually reducing toil.

Google’s SRE experts have helpfully written a book, freely available online.
In a nutshell, they define SRE as a high-skill operating model for online,
high-traffic software services. (Note: The “site” in SRE means website, not
geographical or office location.)

It’s fair to say that the SRE model balances several metrics and team
dynamics—including the following—in a highly effective but rather delicate
equilibrium:

• Product dev teams begin by running their own services, including being on
call for incidents.

• If and when the service reaches a high-traffic state, the dev team may
request support from an SRE to take on running the service in production,
leaning on the SRE’s reliability and to-scale engineering skills.

• The product owner for the service must define a service-level objective
(SLO) based on the downtime deemed acceptable. So, 99.9% availability
equates to just 43 minutes of downtime per month, whereas 99.99%
availability leaves just 4 minutes of downtime each month.

• The acceptable and available downtime becomes the error budget for
the service, which the dev team can spend how it likes. This includes
trying out new features, improving operability, etc. But if the service goes
down for more than the budgeted time in a month, no new changes are
permitted.

• To be permitted to deploy again, the dev team must demonstrate
increased reliability through automated operational tests.

This creates a very powerful dynamic for addressing operational problems
rapidly and keeping product owners honest about both the required SLO
and the operability level in their software service. Any services that must be
highly available need huge investments in automation and testing to enable
a continual flow of user-visible changes.

https://landing.google.com/sre/book.html
https://cloudplatform.googleblog.com/2017/06/why-should-your-app-get-SRE-support-CRE-life-lessons.html

43

SRE

Get started with SRE

SRE is a specific approach to IT operations for large-scale, cloud-native
software systems. The SRE model sets up a healthy and productive
interaction between the development and SRE teams using SLOs and error
budgets to balance the speed of new features with whatever work is needed
to make the software reliable.

SRE therefore needs quite special skills to succeed, along with strong trust
between teams. SRE might be suitable for some enterprises looking to adopt
cloud-native approaches quickly, possibly by using an SRE-as-a-service
offering from an outsourced provider.

The SRE model is one of several team patterns for modern software delivery
explored in the forthcoming book Team Topologies, by Matthew Skelton and
Manuel Pais. Follow @TeamTopologies on Twitter for more details.

[Original:
https://techbeacon.com/enterprise-it/5-ways-site-reliability-engineering-transforms-it-ops]

https://twitter.com/teamtopologies
https://techbeacon.com/enterprise-it/5-ways-site-reliability-engineering-transforms-it-ops

44

SRE

SRE in practice: 5 insights
from Google’s experience
Matthew Skelton, Head of Consulting, Conflux

As site reliability engineering (SRE) becomes more commonplace across IT
organizations, what lessons can you learn from Google, one of the originators
of SRE? I have recently been helping several organizations understand
and adopt SRE practices; as part of this, I spoke to David Ferguson, EMEA
lead for customer reliability engineering at Google, to understand how SRE
actually works at the firm.

Many organizations face challenges when building reliable services. They
often find that just renaming an operations team “SRE” doesn’t meaningfully
solve their problems. And even if they have staff with SRE skills, they need to
create an organizational environment to set them up for success.

Google’s SRE guidelines and procedures provide useful insights for other
organizations about how they might approach SRE deployment in their own
environment. Here are five that your team should pay attention to.

1. A separate SRE team is always optional

One of the most important aspects of SRE at Google is that only some
services get SRE involvement. That’s correct: SRE is optional. Software
development teams cannot assume they will get SRE support for their
software.

“Make it a privilege to have SRE involvement, not mandatory,” Google’s
Ferguson said.

Think of it like this: A software engineering team should expect to build and
run its software entirely by itself, possibly forever. That is the default position
at Google.

https://techbeacon.com/enterprise-it/5-ways-site-reliability-engineering-transforms-it-ops
https://www.linkedin.com/in/davidsferguson/
https://content.microfocus.com/continuous-delivery-release-automation-tb/effective-product-release?lx=-DC2cJ&utm_source=techbeacon&utm_medium=techbeacon&utm_campaign=00134846

45

SRE

If the service never reaches sufficient scale to merit SRE involvement, then
the software engineering team must continue to build and run the software
in production. This is shown as Scenario 1 in the diagram below (where
“SA” stands for “stream-aligned,” the name for cross-functional software
engineering teams we use in the book I co-authored with Manuel Pais, Team
Topologies).

As a software service begins to scale and needs some operational expertise
to help improve its resilience, an SRE team might help the stream-aligned
software engineering team to understand scaling, reliability, observability,
and how to use platform components that it manages. This is Scenario 2 in
the diagram below. However, at this point, the SRE team is not yet running
the software in production.

Finally, if the stream-aligned software engineering team can persuade the
SRE team that its software is operationally ready, the SRE team might choose
to partner with it to run the software in production, ensuring reliability as the

Scenario 1 shows the default position of a stream-aligned (SA), cross-functional software
engineering team building and running software by itself. Scenario 2 shows an SRE team helping
the stream-aligned software engineering team to understand operability better. Scenario 3 shows
the SRE team taking responsibility for running the software in production. Source: Team Topologies,
by Matthew Skelton and Manuel Pais.

https://teamtopologies.com/
https://teamtopologies.com/
https://teamtopologies.com/

46

SRE

software scales. (This is Scenario 3 below.) Software engineering teams must
demonstrate a high degree of operability and service readiness before an
SRE team will partner with them to help improve the software’s reliability. SRE
teams are free to turn down a request for help from a software engineering
team if they think the operational burden would be too high or if there are no
clear opportunities for engineering projects.

Is your SRE team empowered to do that?

2. Software product teams must care
about operability from day one
A software engineering team must demonstrate that its software is ready for
production by continuously focusing on operability. Only by showing that the
software is operationally ready will an SRE team be persuaded to partner
with the software engineering team to help with reliability as the software
scales.

As part of this focus on operability, it’s important to make sure that
organizational incentives (including pay and career progression) help to drive
the right behaviors.

At Google, “we incentivize software engineers to get things into and used in
production” and not just checked in and passing tests, Ferguson said. The
company also rewards SREs when they “actually identify and do engineering
work on services,” he said.

And at Google, software engineers still need to have some contact with
production— through looking after things in early development, business hours
on call, and in other ways.

With this approach, Google avoids a “hard boundary” between software
engineering and SRE teams. Software engineers have incentives to
understand production, and SREs have incentives to understand the business
context of the software, thus encouraging shared ownership.

https://techbeacon.com/app-dev-testing/5-proven-operability-techniques-software-teams

47

SRE

3. You can achieve many of the benefits of the
SRE approach without a separate SRE team
A key part of SRE-based discipline is the use of the error budget to control
when to focus on improving reliability and operability. But the error budget
model can work without a separate SRE team. It just needs discipline from
the software team and product owner to play by the rules of the error
budget and stop deploying new features when service availability has been
breached for that month.

Google’s Ferguson called the error budget mechanism “an appropriate
control process for agile teams” that “want to go fast.” He describes the error
budget discipline like this:

• Define what matters to your users.
• Measure it and define the guardrails that you care about.
• Decide what you are going to do when you hit the guardrails.
• When you hit the guardrails, actually do the thing you said you would.
• Be transparent with your data and your actions.

When outlined in this way, it’s clear that a single stream-aligned software
team can be empowered to enact error budgets without needing a separate
SRE team. What you’re doing here is keeping a laser-like focus on what
matters to the end user and making sure that you know when the end-user
experience is starting to degrade.

4. Choose business-relevant service-level objectives

At the heart of the SRE approach is the service-level objective (SLO) for
the application or service that is being run by the SRE team. An SLO is a
performance or availability target for that service, a degree of performance
or availability that meets business expectations at an acceptable cost.

Conformance to SLOs is measured through the use of a service-level indicator
(SLI), or perhaps several SLIs. An SLI is a single quantitative measure of
some aspect of the behavior or performance of a service or system. SLIs are
generally closely tied to characteristics that users of the service care about:

48

SRE

response time (for web applications), durability (for data persistence), error
rate, or perhaps the availability of a multi-step flow.

Synthetic transaction monitoring is good to have in place because the
monitoring is driven from external locations, generating a similar experience
to that seen by end users. However, teams at Google often go beyond
synthetic monitoring, as Ferguson explains. “We are actually scoring each
and every interaction with the service.”

Synthetic monitoring is useful because it represents an expected load on the
system but rarely covers the full breadth of interactions that matter. This is
particularly true with horizontally scaled components, where the synthetics
may tend to probe only one instance of each clustered service.

This focus on the ways in which users experience the running services
and applications is a key aspect of the SRE approach. Instead of simply
monitoring uptime (whether a process is running or a webpage is present),
SLOs driven by SLIs encourage attention to the quality of the interaction
experienced by the user. Ultimately, quality is one of the most important
criteria for successful software.

5. Reliability is about more than
just avoiding downtime
If a service is down, it’s fairly straightforward to understand the impact on
users: They cannot use the system at all. However, end users can be affected
by services performing slowly or intermittently, or in unusual ways at certain
times. These more nuanced aspects of reliability are crucial to measure as
part of SRE.

“Our approach isn’t just about hard downtime,” Ferguson said. An SLO of
99.9% over a month means that around 1 in a 1,000 requests fail (or go too
slow) over that period.

The Google SRE approach weights in the real-time aspects of reliability, such
as temporary slowness during garbage collection or peak time. It also biases
toward busy-hour; if 10% of your traffic is at busy hour, then you will burn

49

SRE

error budget much faster if you have an outage during that time.

It also makes it clearer that everyone has a part to play. When you focus
just on outages, it tends to look like operations fault and we can convince
ourselves that it can’t/won’t happen again. When you look at request-by-
request performance, you’ll quickly see that you never really have 100%, and
you don’t want to spend the time or money getting to 100%

Modern large-scale software needs high-quality metrics on performance—
covering request/response time, latency, throughput, variability, outliers, data
persistence, and more. These things all contribute to the reliability of the
software as seen by end users, so we need to measure and understand all
these dimensions.

Ferguson said, “Done right, [with SRE] we are just helping the organization
keep to the promises/decisions it made about how good it wanted its
products to be.”

Leverage the underlying dynamics
of SRE, not just the name
The SRE approach can clearly be a key part of success with large-
scale cloud software. However, simply adding a separate SRE team
misunderstands how Google implements the concept. In fact, SRE teams
are optional at Google and software engineering teams must work hard to
persuade SRE teams that their software has good operability.

“If you don’t care about your reliability, they shouldn’t have to, either,”
Ferguson said.

So, keep SRE teams as a privilege for the most deserving services, define
your error budget and use that as a control mechanism for software teams,
keep a relentless focus on the operability of the software you’re building,
and choose SLIs and SLOs wisely to make sure that you’re measuring what
actually users really care about.

https://techbeacon.com/app-dev-testing/9-metrics-can-make-difference-todays-software-development-teams

50

SRE

To improve your approaches to SRE and operability, see The Site Reliability
Workbook from Google, which includes practical tips on SRE implementation
based on work with Google’s customers, and the Team Guide to Software
Operability from Conflux Books, which contains practical, team-focused
techniques for enhancing operability in modern software.

[Original: https://techbeacon.com/enterprise-it/sre-practice-5-insights-googles-experience]

https://landing.google.com/sre/workbook/toc/
https://landing.google.com/sre/workbook/toc/
http://operabilitybook.com/
http://operabilitybook.com/
https://techbeacon.com/enterprise-it/sre-practice-5-insights-googles-experience

Transformation
for fast flow
Conflux works with key groups in your
organization over six to 18 months to
increase awareness and capabilities
around fast flow and Team Topologies.

confluxhq.com/transform

https://confluxhq.com

TechBeacon.com is a digital hub by and
for software engineering, IT and security

professionals sharing practical and passionate
guidance to real-world challenges.

Join the conversation:

techbeacon.com

https://techbeacon.com

53

About the author
Matthew Skelton is the co-author of the books Team
Topologies: organizing business and technology teams
for fast flow. Head of Consulting at Conflux (confluxhq.
com), he specialises in Continuous Delivery, operability,
and organization dynamics for software in manufacturing,
ecommerce, and online services.

Recognised by TechBeacon in 2018, 2019 and 2020 as one of the top 100
people to follow in DevOps, Matthew curates the well-known DevOps
topologies patterns at devopstopologies.com. and is co-author of the
books Team Topologies (IT Revolution Press, 2019), Team Guide to Software
Operability (Skelton Thatcher Publications, 2016), and Continuous Delivery
with Windows and .NET (O’Reilly, 2016), along with several key reports on
SRE.

Matthew founded Conflux in 2017 to offer training and consulting to
organizations building and running software systems.

Twitter: @matthewpskelton | LinkedIn: linkedin.com/in/matthewskelton/

About Conflux
At Conflux we help organizations to adopt and sustain proven, modern
practices for delivering software rapidly and safely using consulting,
training, and our own range of books. We specialize in applying Continuous
Delivery, software operability, and team-first organization design using Team
Topologies across organizations of all sizes, from startups to multinational
corporations.

Led by well-known consultant, speaker, trainer, and author Matthew Skelton,
Conflux brings a holistic approach to sustainable software delivery for all
organizations.

confluxhq.com

https://teamtopologies.com/
https://teamtopologies.com/
https://techbeacon.com/app-dev-testing/devops-100-do-your-ops-boss-follow-these-top-pros
https://techbeacon.com/app-dev-testing/devops-100-do-your-ops-boss-follow-these-top-pros
https://web.devopstopologies.com/
https://web.devopstopologies.com/
https://teamtopologies.com/
https://confluxbooks.com/books/team-guide-to-software-operability
https://confluxbooks.com/books/team-guide-to-software-operability
https://continuousdeliverywithwindows.wordpress.com/
https://continuousdeliverywithwindows.wordpress.com/
https://twitter.com/matthewpskelton
https://linkedin.com/in/matthewskelton/
https://confluxdigital.net

consulting + training + books for effective software delivery

confluxhq.com

Copyright (c) 2017-2022 Conflux group of companies; All Rights Reserved.

Registered office: West One, 114 Wellington Street, Leeds, LS1 1BA, UK

Registered in England and Wales, number 10890964. VAT registration number GB280146126

https://confluxdigital.net

